

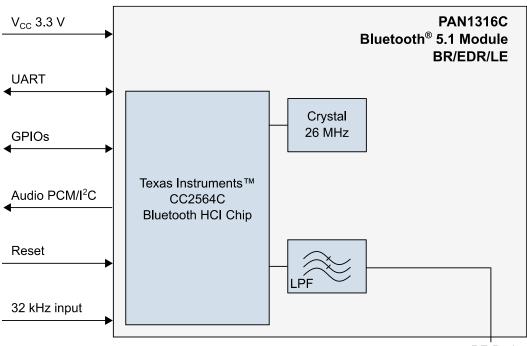
PAN1316C

Bluetooth[®] Basic Data Rate and Low Energy Module Product Specification

Rev. 1.4

Wireless Connectivity

Overview


Panasonic's PAN1316C is a Host Controlled Interface (HCI) Bluetooth Radio Frequency (RF) module that brings Texas Instruments[™], seventh generation Bluetooth core integrated circuit, the CC2564C, to an easy-to-use module format. The PAN1316C is Bluetooth 5.1 compliant and it offers best-in-class RF performance with about twice the range of other Bluetooth Low Energy (LE) solutions. Panasonic's tiny footprint technology has produced a module of only 85.5 mm². The module is designed to accommodate PCBs pad pitch of 1.3 mm and as few as two layers for easy implementation and manufacturing. The module has been designed to be 100 percent pin-compatible with previous generations of Texas Instruments based Bluetooth HCI modules.

Features

- Bluetooth 5.1 compliant up to the HCI layer
- Best-in-class Bluetooth RF performance (Tx, Rx sensitivity, blocking)
- Based upon Texas Instruments CC2564C
- Interfaces: UART, GPIO, PCM

Characteristics

- Dimensions: 9 mm × 6.5 mm ×1.8 mm
- Bluetooth 5.1
- Receiver sensitivity: -93 dBm
- Output power: 11.5 dBm
- Power supply: 1.7 V to 4.8 V
- Power consumption: Tx 40 mA
- Power consumption: Rx 20 mA
- Sleep mode: 135 µA
- Operating temperature range: -40 °C to 85 °C

Block Diagram

RF-Pad

PAN1316C Bluetooth Module

By purchase of any of the products described in this document the customer accepts the document's validity and declares their agreement and understanding of its contents and recommendations. Panasonic Industrial Devices Europe GmbH (Panasonic) reserves the right to make changes as required at any time without notification. Please consult the most recently issued Product Specification before initiating or completing a design.

© Panasonic Industrial Devices Europe GmbH 2022.

This specification sheet is copyrighted. Reproduction of this document is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Do not disclose it to a third party.

All rights reserved.

This Product Specification does not lodge the claim to be complete and free of mistakes.

If this document is marked as preliminary, please be aware that its final content is not yet concluded and the use of it is at your own risk.

Document Acceptance

By signing the Product Specification, you acknowledge that you are a legal representative for your company and that you understand and accept the validity of the contents herein.

If the signed version of the Product Specification has not been returned to Panasonic within 30 days after receipt of the product, the specification or approval sheet shall be deemed to be accepted by you.

Engineering Samples (ES)

If Engineering Samples are delivered to the customer, these samples have the status "Engineering Samples". This means that the design of this product is not yet concluded. Engineering Samples may be partially or fully functional, and they may differ from the published Product Specification.

Engineering Samples are not qualified and they are not to be used for reliability testing or series production.

Disclaimer

The customer acknowledges that samples may deviate from the Product Specification and may bear defects due to their status of development and the lack of qualification mentioned above.

Panasonic rejects any liability or product warranty for Engineering Samples. In particular, Panasonic disclaims liability for damages caused by:

- The use of the Engineering Sample other than for evaluation purposes, particularly the installation or integration in another product to be sold by the customer,
- Deviation or lapse in function of the Engineering Sample,
- Improper use of the Engineering Sample.

Panasonic Industrial Devices Europe GmbH disclaims any liability for consequential and incidental damages. In case of any queries regarding the Engineering Samples, please contact your local sales partner or the related product manager.

Information on Software

The PAN1316C module does not contain any software ex works, i.e. software is provided by 3rd party suppliers only. The essential software resources can be found on the partner website of Texas Instruments https://www.ti.com/.

PIDEU provides a factory software programming service for your customized firmware; for further information please reach out to your local sales contact this regarding \Rightarrow 6.2.1 Contact Us.

Table of Contents

1	About	This Document	5
	1.1	Purpose and Audience	5
	1.2	Revision History	5
	1.3	Use of Symbols	5
	1.4	Related Documents	5
2	Overv	iew	6
	2.1	Block Diagram	7
	2.2	Pin Configuration	8
	2.3	Device Power Supply	11
	2.4	Clock Inputs	12
	2.5	Bluetooth Features	12
	2.6	Interfaces	13
3	Detail	ed Description	19
	3.1	Dimensions	
	3.2	Footprint	20
	3.3	Packaging	21
	3.4	Case Marking	24
4	Speci	fication	25
-	4.1	Default Test Conditions	
	4.2	Absolute Maximum Ratings	
	4.3	Recommended Operating Conditions	
	4.4	Current Consumption	
	4.5	nSHUTD Requirements	27
	4.6	External Digital Slow Clock Requirements	
	4.7	Reliability Tests	34
	4.8	Recommended Soldering Profile	35
5	Cautio	ons	36
	5.1	Design Notes	
	5.2	Installation Notes	
	5.3	Usage Condition Notes	37
	5.4	Storage Notes	
	5.5	Safety Cautions	37
	5.6	Other Cautions	38
	5.7	Restricted Use	39
	5.8	Bluetooth	39
6	Apper	ndix	40
	6.1	Ordering Information	
	6.2	Contact Details	

1 About This Document

1.1 Purpose and Audience

This Product Specification provides details on the functional, operational, and electrical characteristics of the Panasonic PAN1316C module. It is intended for hardware design, application, and Original Equipment Manufacturers (OEM) engineers.

The product is referred to as "PAN1316C" and "module" within this document.

1.2 Revision History

Revision	Date	Modifications/Remarks
1.0	2017-11-01	First version
1.1	2018-02-01	Added Bluetooth QDIDs
1.2	2018-08-10	Updated layout and editorial changes
1.3	2020-02-27	New Design. Formal changes. Updated footprints and pin assignments. Updated Bluetooth QDIDs and formatting. Changed temperature range. Updated chapter "4.7 Bluetooth": table "Bluetooth LE Modulation" (parameters "Average Power" and "Peak Power").
1.4	2022-03-23	Removed module version PAN1326C. Updated disclaimer. Updated Bluetooth version. Updated Block Diagram. Updated chapter "Bluetooth".

1.3 Use of Symbols

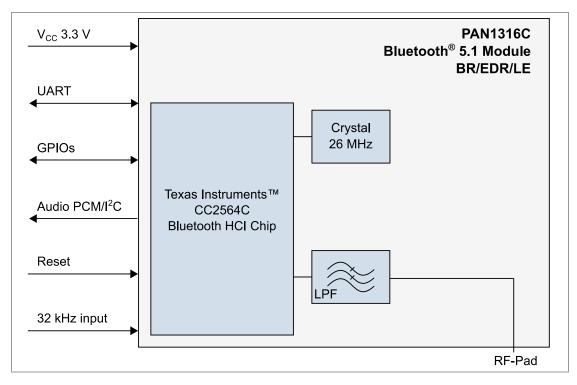
Symbol	Description
(j)	Note Indicates important information for the proper use of the product. Non-observance can lead to errors.
	Attention Indicates important notes that, if not observed, can put the product's functionality at risk.
⇒ [chapter number] [chapter title]	Cross reference Indicates cross references within the document. Example: Description of the symbols used in this document ⇒ 1.3 Use of Symbols.

1.4 Related Documents

For related documents please refer to the Panasonic website \Rightarrow 6.2.2 Product Information.

2 Overview

Panasonic's PAN1316C is a Host Controlled Interface (HCI) Bluetooth RF module that brings Texas Instruments' seventh generation Bluetooth core integrated circuit, the CC2564, to an easy-to-use module format. The PAN1316C is Bluetooth 5.1 compliant and it offers best in class RF performance with about twice the range of other Bluetooth LE solutions. Panasonic's tiny footprint technology has produced a module of only 85.5 mm². The module is designed to accommodate PCBs pad pitch of 1.3 mm and as few as two layers for easy implementation and manufacturing. The module has been designed to be 100 percent pin-compatible with previous generations of Texas Instruments based Bluetooth HCI modules.


For related documents please refer to \Rightarrow 6.2.2 Product Information.

For further information on the variants and versions please refer to \Rightarrow 6.1 Ordering Information.

Panasonic INDUSTRY

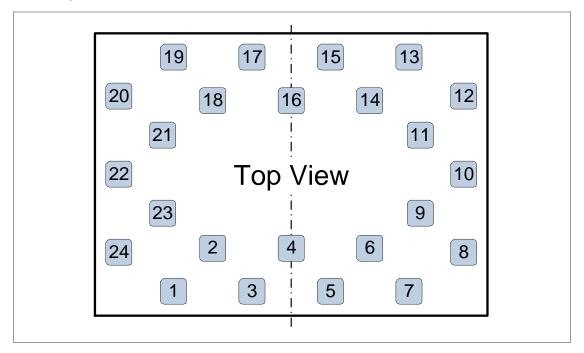
2 Overview

2.1 Block Diagram

The Slow Clock 32.768 kHz is mandatory, otherwise the module does not start up \Rightarrow 2.4 Clock Inputs.

()

The I/O are 1.8 V driven and might need external level shifter and Low-dropout regulator (LDO). The pin "MLDO_OUT" cannot be used as reference due to RF internal connection.


The total capacity will not exceed 2.8 μ F. The total inductance will not exceed 0 nH. There are no voltage multiplying or voltage boosting circuits.

2 Overview

2.2 Pin Configuration

Pin Assignment

Pin Functions

No.	Pin Name	Pull at Reset	Def. Dir. ¹	I/O Type ²	Description	
1	GND				Connect to ground	
2	TX_DBG	PU	0	2 mA	Logger output	
3	HCI_CTS	PU	I	8 mA	HCI UART clear-to-send	
4	HCI_RTS	PU	0	8 mA	HCI UART request-to-send	
5	HCI_RX	PU	I	8 mA	HCI UART data receive	
6	HCI_TX	PU	0	8 mA	HCI UART data transmit	
7	AUD_FSYNC	PD	I/O	4 mA	PCM frame synchronization (NC if not used)	
					Fail-safe ³	
8	SLOW_CLK_IN		I		32.768 khz clock in	
					Fail-safe	
9	NC		I/O		Not connected	

¹ I=input, O=output, I/O=bidirectional, P=power, PU=pulled up, PD=pulled down

² I/O Type: Digital I/O cells. HY=input hysteresis, current=typ. output current

 3 No signals are allowed on the I/O pins if no $V_{\text{DD}_{-IO}}$ (pin 22) power supplied, except pin 7, 8, 17, 18, and 19.

Panasonic

2 Overview

No.	Pin Name	Pull at Reset	Def. Dir. ¹	I/O Type ²	Description	
10	MLDO_OUT		0		Main LDO output (1.8 V nominal)	
11	CL1.5_LDO_IN		1		PA LDO input	
12	GND				Connect to ground	
13	RF		I/O		Bluetooth RF I/O	
14	GND				Connect to ground	
15	MLDO_IN		1		Main LDO input	
16	nSHUTD	PD	I		Shutdown input (active low)	
17	AUD_OUT	PD	0	4 mA	PCM data output (NC if not used)	
					Fail-safe	
18	AUD_IN	PD	1	4 mA	PCM data input (NC if not used)	
					Fail-safe	
19	AUD_CLK	PD	I/O	HY, 4 mA	PCM clock (NC if not used)	
					Fail-safe	
20	GND				Connect to ground	
21	NC				EEPROM I ² C SDA (internal)	
22	V _{DD_IO}		PI		I/O power supply (1.8 V nominal)	
23	NC				EEPROM I ² C SCL (internal)	
24	NC		I/O		Not connected	

Pin Description

i.

HCI_CTS is an input signal to the CC2564C device:

- When HCI_CTS is low: CC2564C is allowed to send data to host device.
- When HCI_CTS is high: CC2564C is not allowed to send data to host device.

No.	Pin Name	Pull at Reset	Def. Dir. ²	I/O Type ²	Description
Bluetooth I/O Signals					
5	HCI_RX	PU	I	8 mA	HCI UART data receive
6	HCI_TX	PU	0	8 mA	HCI UART data transmit
4	HCI_RTS	PU	0	8 mA	HCI UART request-to-send

Panasonic INDUSTRY

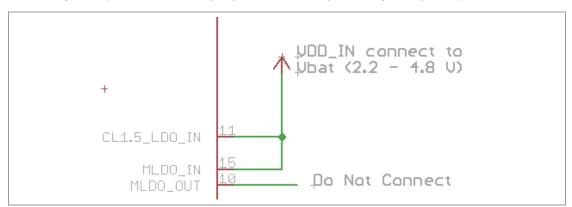
2 Overview

No.	Pin Name	Pull at Reset	Def. Dir. ²	I/O Type ²	Description	
Blue	tooth I/O Signals					
3	HCI_CTS	PU	1	8 mA	HCI UART clear-to-send	
7	AUD_FYSNC	PD	I/O	4 mA	PCM frame synchronization (NC if not used)	
					Fail-safe	
19	AUD_CLK	PD	I/O	HY, 4 mS	PCM clock (NC if not used)	
					Fail-safe	
18	AUD_IN	PD	1	4 mA	PCM data input (NC if not used)	
					Fail-safe	
17	AUD_OUT	PD	0	4 mA	PCM data output (NC if not used) Fail-safe Logger output	
2	TX_DBG	PU	0	2 mA	Logger output	
					OPTION: nTX_DBG - logger out (low=1)	
Cloc	k Signal					
8	SLOW_CLK_IN		1		32.768 kHz clock in	
			Fail-safe		Fail-safe	
Blue	tooth Analog Sigr	als			1	
13	RF		I/O		Bluetooth RF I/O	
16	nSHUTD	PD	1		Shutdown input (active low)	
Blue	tooth Power and	GND Signa	als			
22	V _{DD_IO}		PI		I/O power supply (1.8 V nominal)	
15	MLDO_IN		1		Main LDO input	
					Connect directly to battery or to a pre-regulated 1.8 V supply	
10	MLDO_OUT		0		Main LDO output (1.8 V nominal)	
					Can not be used as 1.8 V supply due to internal connection to the RF part.	
			1		PA LDO input	
11	CL1.5_LDO_IN				Connect directly to battery or to a pre-regulated 1.8 V supply	
11	CL1.5_LDO_IN				Connect directly to battery or to a pre-regulated 1.8 V supply	
11	GND		Ρ			
1			P		1.8 V supply	
1	GND GND				1.8 V supply Connect to ground	

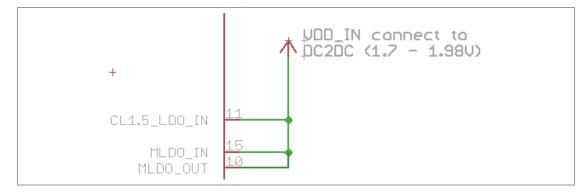
EEPROM I/O Signals (EEPROM is optional)							
23	NC	PU/PD	I	HY, 4 mA	EEPROM I ² C SCL (internal)		
21	NC	PU/PD	I/O	HY, 4 mA	EEPROM I ² C IRQ (internal)		

2.3 Device Power Supply

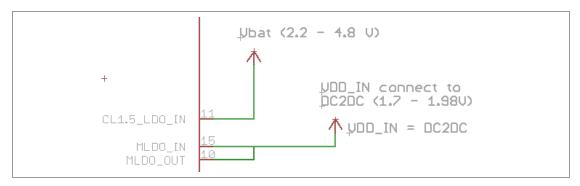
The PAN1316C Bluetooth radio solution is intended to work in devices with a limited power budget such as cellular phones, headsets, handheld PC's, and other battery-operated devices. One of the main differentiators of the PAN1316C is its power management. It is ability to draw as little current as possible.


The PAN1316C device requires two kinds of power sources:

- Main power supply for the Bluetooth (V_{DD_IN}=V_{BAT})
- Power source for the 1.8 V I/O ring (V_{DD_IO})


The PAN1316C includes several on-chip voltage regulators for increased noise immunity. The PAN1316C can be connected directly to the battery or to an external 1.8 V DC to DC converter.

Three ways to supply power


Full VBAT system (Maximum RF output power, but not optimum system power):

Full-DC2DC system (Lower RF output power, but optimum system power):

Mixed DC2DC-V_{BAT} system (Maximum RF output power and optimum system power, but requires routing of V_{BAT}):

2.4 Clock Inputs

The Slow Clock is always supplied from an external source. It is connected to the "SLOW_CLK_IN" pin number "8" and can be a digital signal with peak to peak of 0 V to 1.8 V. The Slow Clock's frequency accuracy must be 32.768 kHz 250 ppm for Bluetooth usage (according to the Bluetooth specification).

The Slow Clock 32.768 kHz is mandatory to start the internal controller; otherwise, the module does not start up.

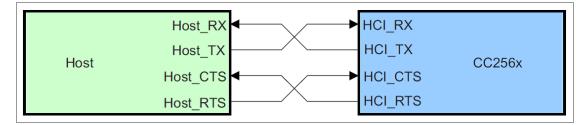
2.5 Bluetooth Features

- Bluetooth 5.1 compliant up to the HCI layer
- Up to seven active devices
- Scatternet: up to three piconets simultaneously, one as master and two as slaves
- Up to two Synchronous Connection Oriented (SCO) links on the same piconet
- Support for all voice Air-Coding Continuously Variable Slope Delta (CVSD), A-law, µ-law, modified Subband Coding (mSBC), and transparent (uncoded)
- Assisted mode for Handset Profile (HFP) 1.6 Wideband Speech (WBS) profile or Advanced Audio Distribution Profile (A2DP) profile to reduce host processing and power
- Support of multiple Bluetooth profiles with enhanced QoS
- Multiple sniff instances tightly coupled to achieve minimum power consumption
- Independent buffering for LE allows large numbers of multiple connections without affecting BR or EDR performance
- Built-in coexistence and prioritization handling for BR, EDR, and LE
- Capabilities of link layer topology Scatternet (can act concurrently as peripheral and central)
- Network support for up to ten devices
- Timeline optimization algorithms to achieve maximum channel utilization

2.6 Interfaces

2.6.1 Host Controller Interface (HCI)

The CC2564C2 incorporates one UART module dedicated to the HCI transport layer. The HCI interface transports commands, events, ACL, and synchronous data between the Bluetooth device, and it is host using HCI data packets.


The UART module supports H4 (4-wires) protocol with maximum baud rate of 4 Mbps for all fast clock frequencies.

After power up the baud rate is set for 115.2 kbps, irrespective of fast clock frequency. The baud rate can thereafter be changed with a vendor specific command. The CC2564C responds with a Command Complete Event (still at 115.2 kbps), after which the baud rate change takes place. HCI hardware includes the following features:

- Receiver detection of break, idle, framing, FIFO overflow, and parity error conditions
- Transmitter underflow detection
- CTS/RTS hardware flow control

The interface includes four signals: TXD, RXD, CTS, and RTS. Flow control between the host and the CC2564C is byte-wise by hardware.

Flow control is obtained by the following:

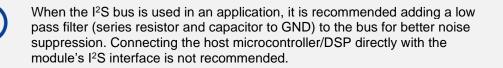
When the UART Rx buffer of the CC2564C passes the "flow control" threshold, it will set the signal UART_RTS high to stop transmission from the host.

When the signal UART_CTS is set high, the CC2564C will stop it is transmission on the interface. In case HCI_CTS is set high in the middle of transmitting a byte, the CC2564C will finish transmitting the byte and stop the transmission.

2.6.2 Audio/Voice CODEC Interface

The codec interface is a fully-dedicated programmable serial port that provides the logic to interface to several kinds of PCM or Inter-IC Sound (I²S) codec's. PAN1316C supports all voice coding schemes required by Bluetooth specification, Log PCM (A-Law or μ -Law) and Linear (CVSD). In addition, module also supports transparent scheme:

- Two voice channels
- Master/slave modes
- µ-Law, A-Law, linear, transparent coding schemes
- Long and short frames
- Different data sizes, order, and positions
- High rate PCM interface for EDR
- Enlarged interface options to support a wider variety of codecs
- PCM bus sharing


2.6.2.1 PCM Hardware Interface

The PCM interface is one implementation of the codec interface. It contains the following lines:

- Clock: configurable direction (input or output)
- Frame synchronization: configurable direction (input or output)
- Data In: Input
- Data Out: Output/3-state

The Bluetooth device can be the master of the interface where it generates the clock and the frame synchronization signals, or slave where it receives these two signals. The PCM interface is fully configured by a vendor specific command.

For slave mode, clock input frequencies of up to 16 MHz are supported. At clock rates above 12 MHz, the maximum data burst size is 32 bit. For master mode, the CC2564C can generate any clock frequency between 64 kHz and 6 MHz.

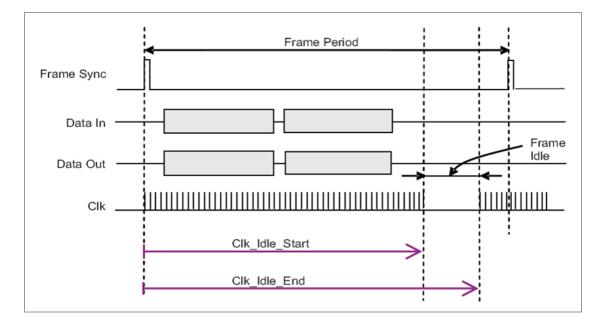
The suggested low pass filter component values are:

- 470 pF
- 120 Ω

2.6.2.2 Data Format

The data format is fully configurable:

- The data length can be from 8 bit to 320 bit, in 1 bit increments, when working with two channels, or up to 640 bit when using one channel. The Data length can be set independently for each channel.
- The data position within a frame is also configurable in with 1 clock (bit) resolution and can be set independently (relative to the edge of the frame synchronisation signal) for each channel.
- The bit order Data_In and Data_Out can be configured independently. For example: Data_In can start with the MSB while Data_Out starts with LSB. Each channel is separately configurable. The inverse bit order (that is LSB first) is supported only for sample sizes up to 24 bit.
- It is not necessary for the data in and data out size to be the same length.
- The Data_Out line is configured to "high-Z" output between data words. Data_Out can also be set for permanent high-Z, irrespective of data out. This allows the CC2564C to be a bus slave in a multi-slave PCM environment. At power up, Data_Out is configured as "high-Z".


2.6.2.3 Frame Idle Period

The codec interface has the capability for frame idle periods, where the PCM clock can "take a break" and become "0" at the end of the PCM frame, after all data has been transferred.

The CC2564C supports frame idle periods both as master and slave of the PCM bus.

When CC2564C is the master of the interface, the frame idle period is configurable. There are two configurable parameters:

- Clk_Idle_Start
- Clk_Idle_End

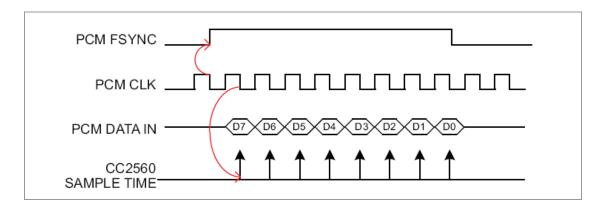
Clk_Idle_Start:

Indicates the number of PCM clock cycles from the beginning of the frame until the beginning of the idle period. After Clk_Idle_Start clock cycles, the clock will become "0".

Clk_ldle_End:

Indicates the time from the beginning of the frame till the end of the idle period. This time is given in multiples of PCM clock periods.

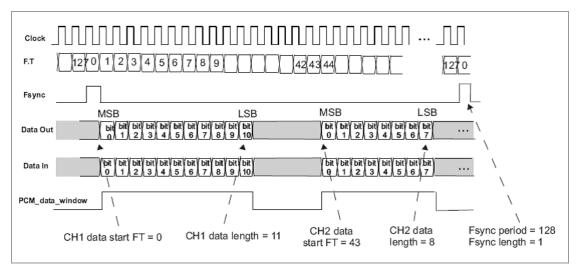
The delta between Clk_Idle_Start and Clk_Idle_End is the clock idle period.


For example, for PCM clock rate=1 MHz and frame synchronisation period=10 kHz: Clk_Idle_Start=60, Clk_Idle_End=90.

Between each two frame synchronisations there are 70 clock cycles (instead of 100). The clock idle period starts 60 clock cycles after the beginning of the frame, and lasts 90 to 60=30 clock cycles. This means that the idle period ends 100 to 90=10 clock cycles before the end of the frame. The data transmission must end prior to the beginning of the idle period.

2.6.2.4 Clock-Edge Operation

The codec interface of the CC2564C can work on the rising or the falling edge of the clock. It also has the ability to sample the frame synchronisation and the data at inversed polarity.


This is the operation of a falling-edge-clock type of codec. The codec is the master of the PCM bus. The frame synchronisation signal is updated (by the codec) on the falling clock edge and therefore shall be sampled (by the CC2564C) on the next rising clock. The data from the codec is sampled (by the CC2564C) on the clock falling edge.

2.6.2.5 Two-Channel PCM Bus Example

In below figure, a two-channel PCM bus is shown where the two channels have different word sizes and arbitrary positions in the bus frame. (FT=Frame Timer)

2.6.2.6 Audio Encoding

The CC2564C codec interface can use one of four audio-coding patterns:

- A-Law (8 bit)
- µ-Law (8 bit)
- Linear (8 bit or 16 bit)

2.6.2.7 Improved Algorithm for Lost Packets

The CC2564C features an improved algorithm for improving voice quality when received voice data packets are lost. There are two options:

- Repeat the last sample: possible only for sample sizes up to 24 bit. For sample sizes >24 bit, the last byte is repeated.
- Repeat a configurable sample of 8 bit to 24 bit (depends on the real sample size): in order to simulate silence (or anything else) in the PCM bus. The configured sample will be written in a specific register for each channel.

The choice between those two options is configurable separately for each channel.

2.6.2.8 Bluetooth/PCM Clock Mismatch Handling

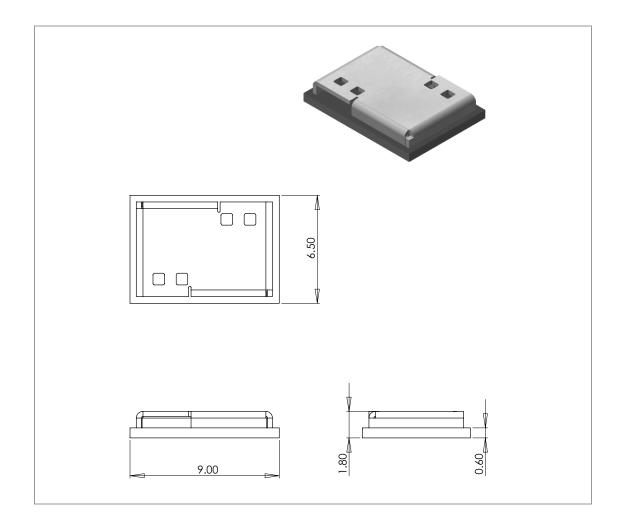
In Bluetooth Rx, the CC2564C receives RF voice packets and writes these to the codec I/F. If the CC2564C receives data faster than the codec I/F output allows, an overflow will occur. In this case, the Bluetooth has two possible behavior modes:

- "allow overflow": The Bluetooth will continue receiving data and will overwrite any data not yet sent to the codec.
- "don't' allow overflow": RF voice packets received when buffer is full will be discarded.

Ĵ

2.6.2.9 Bluetooth Inter-IC Sound (I²S)

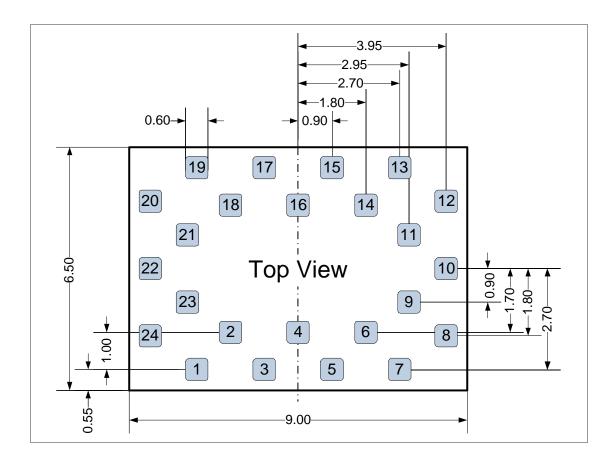
The CC2564C can be configured as an I²S serial interface to an I²S codec device. In this mode, the CC2564C audio codec interface is configured as a bi-directional, full-duplex interface with two time slots per frame: Time slot 0 is used for the left channel audio data and time slot 1 for the right channel audio data. Each time slot is configurable up to 40 serial clock cycles in length and the frame is configurable up to 80 serial clock cycles in length.


Do not connect the microcontroller/DSP directly to the module's PCM interface.

It is recommended to use a simple RC low pass filter to improve noise suppression.

3.1 Dimensions

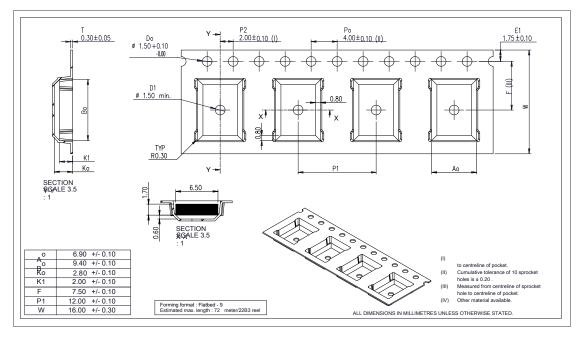
The dimensions are in millimeters.



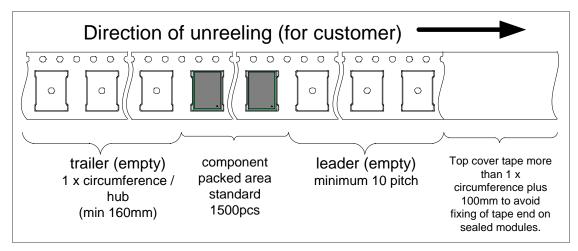
No.	Item	Dimension	Tolerance	Remark
1	Width	6.50	±0.30	
2	Length	9.00	±0.30	
3	Height	1.80	±0.20	With case

3.2 Footprint

- All dimensions are in millimeters.
- The layout is symmetric to center.
- The inner pins (2, 4, 6, 9, 11, 14, 16, 18, 21, 23) are shifted to the center by 1 mm.



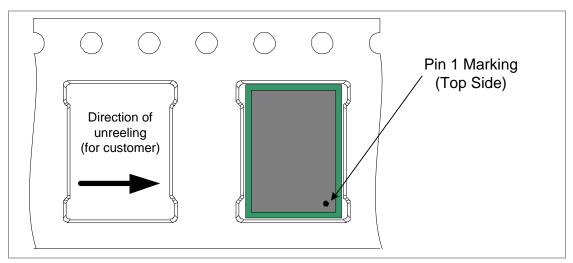
Canasonic INDUSTRY


3.3 Packaging

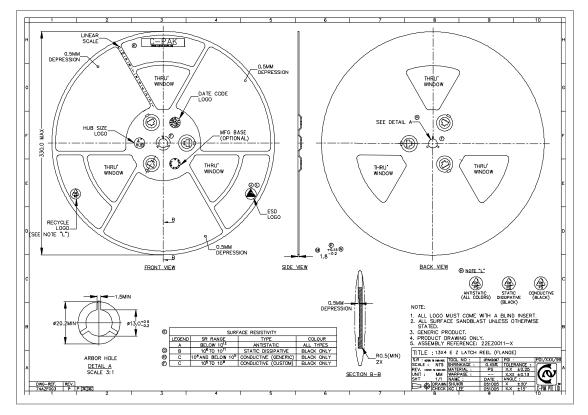
The module is a mass production status product and will be delivered in the package described below.

3.3.1 Tape Dimensions

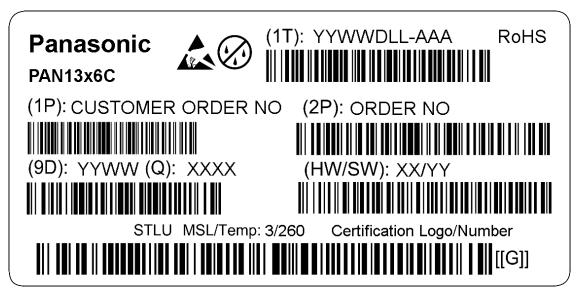
3.3.2 Packing in Tape

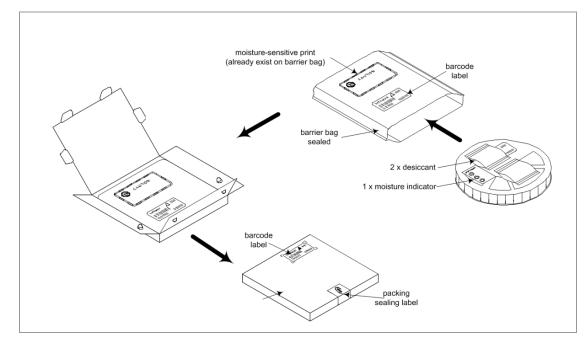


Empty spaces in the component packed area shall be less than two per reel and those spaces shall not be consecutive.


The top cover tape shall not be found on reel holes and it shall not stick out from the reel.

3.3.3 Component Direction


3.3.4 Reel Dimension


3.3.5 Package Label

Example:

(1T)	Lot code
(1P)	Customer order number, if applicable
(2P)	Order number
(9D)	Date code
(Q)	Quantity
(HW/SW)	Hardware/software version

3.3.6 Total Package

3.4 Case Marking

Example:

- 1 Brand name
- 2 Hardware/software version
- 3 2D Data Matrix Code
- 4 Lot code
- 5 Marking for Pin 1
- 6 Order number

4 Specification

All specifications are over temperature and process, unless indicated otherwise.

4.1 Default Test Conditions

Temperature: Humidity: Supply Voltage: 25 °C ± 10 °C 40 % to 85 % RH 3.3 V

4.2 Absolute Maximum Ratings

The maximum ratings may not be exceeded under any circumstances, not even momentarily or individually, as permanent damage to the module may result.

All parameters are measured as follows unless stated otherwise: $V_{DD_{-}IN}^4$ =3.3 V, $V_{DD_{-}IO}$ =1.8 V.

No.	See ⁵	Min.	Max.	Unit
Ratin	gs Over Operating Free-Air Temperature Range			
1	V _{DD_IN}	-0.5	5.5	V
2	V _{DDIO_1.8} v	-0.5	2.145	V
3	Input voltage to RF (Pin "13")	-0.5	2.1	V
4	Operating ambient temperature range	-40	85 ⁶	°C
5	Storage temperature range	-40	125	°C
6	ESD: Human Body Model (HBM). JEDEC 22-A114		500	V

⁴ $V_{DD_{IN}}$ is supplied to "MLDO_IN" (pin 15) and "CL1.5_LDO_IN" (pin 11); other options are described in \Rightarrow 2.3 Device Power Supply.

⁵ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

⁶ Older generation parts, which are not recommended for new designs, will support a temperature range -20°C to 70°C. For details please refer to ⇔ 6.1 Ordering Information.

4.3 Recommended Operating Conditions

The maximum ratings may not be exceeded under any circumstances, not even momentarily or individually, as permanent damage to the module may result.

Symbol	Parameter	Condition	Min.	Max.	Unit
V _{DD_IN}	Power Supply Voltage 7		1.7	4.8	V
V _{DD_IO}	I/O Power Supply Voltage		1.62	1.92	V
V _{IH}	High-Level Input Voltage	Default	0.65 × V _{DD_IO}	V _{DD_IO}	V
V _{IL}	Low-Level Input Voltage	Default	0	$0.35 \times V_{DD_{-}IO}$	V
Tr/Tf	I/O Input Rise/Fall Times, 10 % to 90 % ⁸		1	10	ns
	Maximum Ripple on $V_{\text{DD}_{\text{IN}}}$ (Sine	0 MHz to 0.1 MHz		60	mV _{p-p}
	wave) for 1.8 V (DC2DC) mode	0.1 MHz to 0.5 MHz		50	
		0.5 MHz to 2.5 MHz		30	
		2.5 MHz to 3 MHz		15	
		>3 MHz		5	
	Voltage Dips on $V_{DD_{IN}}$ (V_{BAT}) (duration=577 µs to 2.31 ms, period=4.6 m)			400	mV
	Maximum Ambient Operating Temperature ⁹		-40	85	°C

4.4 Current Consumption

The current consumption depends on the user scenario and on the setup and timing in the power modes.

Assume V_{DD} = 3.3 V, T_{amb} = 25 °C, if nothing else stated.

⁷ Excluding 1.98 < $V_{DD_{-IN}}$ < 2.2 V range is not allowed \Rightarrow 2.3 Device Power Supply.

⁸ Asynchronous mode

⁹ The device can be reliably operated for seven years at T_{ambient} of 85 °C, assuming 25 percent active mode and 75 percent sleep mode (15 400 cumulative active power-on hours).

PAN1316C Bluetooth Module

4 Specification

No.	Characteristics				Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
		25 °C	25 °C	25 °C	-40 °C	-40 °C	-40 °C	+85 °C	+85 °C	+85 °C	
1	Current consumption in Shutdown Mode		1	3						7	μA
2	Current consumption in Deep Sleep Mode		40	105						700	μΑ
3	Total I/O current consumption for Active Mode			1			1			1	mA
4	Current consumption during transmit DH5 full throughput		40								mA

4.5 nSHUTD Requirements

Symbol	Parameter	Min.	Max.	Unit
V _{IH}	Operation Mode Level ¹⁰	1.42	1.98	V
V _{IL}	Shutdown Mode Level	(0.4	V
	Minimum time for nSHUT_DOWN low to reset the device	5	5	ms
Tr/Tf	Rise/Fall Times		20	μs

4.6 External Digital Slow Clock Requirements

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
	Input Slow Clock Frequency			32 768		Hz
	Input Slow Clock Accuracy (Initial + temp + aging)	Bluetooth			±250	Ppm
Tr/Tf	Input Transition Time Tr/Tf : 10 % to 90 %				100	Ns
	Frequency Input Duty Cycle		15	50	85	%
	Phase Noise	At 1 kHz			-125	dBc/Hz
	Jitter	Integrated over 300 Hz to 15 000 Hz			1	Hz
V _{IH}	Slow Clock Input Voltage Limits	Square wave, DC coupled	0.65 × V _{DD_IO}		V _{DD_IO}	V peak
V _{IL}	Slow Clock Input Voltage Limits	Square wave, DC coupled	0		0.35 × V _{DD_IO}	V peak
	Input Impedance		1			MΩ
	Input Capacitance				5	pF

¹⁰ Internal pull down retains shut down mode when no external signal is applied to this pin.

4 Specification

Bluetooth Receiver: In-Band Signals

Characteristics	Condition		Min.	Тур.	Max.	Unit
Operation frequency range			2 402		2 480	MHz
Channel spacing				1		MHz
Input impedance				50		Ω
Sensitivity, Dirty Tx on ¹¹	GFSK, BER=0.1 %		-91.5	-95		dBm
	π/4-DQPSK, BER=0.01 %		-90.5	-94.5		
	8DPSK, BER=0.01 %		-81	-87.5		
BER error floor at sensitivity	π/4-DQPSK		1E-6	1E-7		
+10 dB, dirty Tx off	8DPSK		1E-6			
Maximum usable input power	GFSK, BER=0.1 %		-5			dBm
	π/4-DQPSK, BER=0.1 %	π/4-DQPSK, BER=0.1 %				
	8DPSK, BER=0.1 %		-10			
Intermodulation characteristics	Level of interferers (for n=3, 4, ar	nd 5)	-36	-30		dBm
C/I performance ¹² Image=-1 MHz	GFSK, cochannel					dB
	EDR, cochannel	π/4-DQPSK		9.5	11	
		8DPSK		16.5	20	
	GFSK, adjacent ±1 MHz			-10	-5	
	EDR, adjacent ±1 MHz, (image)	π/4-DQPSK		-10	-5	
		8DPSK		-5	-1	
	GFSK, adjacent +2 MHz	1		-38	-35	
	EDR, adjacent, +2 MHz	π/4-DQPSK		-38	-35	
		8DPSK		-38	-30	
	GFSK, adjacent -2 MHz	1		-28	-20	
	EDR, adjacent -2 MHz	π/4-DQPSK		-28	-20	
		8DPSK		-22	-13	
	GFSK, adjacent ≥ ±3 MHz	1		-45	-43	
	EDR, adjacent ≥ ±3 MHz	π/4-DQPSK		-45	-43	
		8DPSK		-44	-36	
RF return loss				-10		dB
Rx mode LO leakage	Frf=(received RF -0.6 MHz)			-63	-58	dBm

¹¹ Sensitivity degradation up to 3 dB may occur for minimum and typical values where the Bluetooth frequency is a harmonic of the fast clock.

¹² Numbers show ratio of desired signal to interfering signal. Smaller numbers indicate better C/I performance.

4 Specification

Bluetooth Receiver: General Blocking

Characteristics	Condition	Min.	Тур.	Unit
according to Bluetooth specification ¹³	30 to 2 000		-6	MHz
	2 000 to 2 399		-6	MHz
	2 484 to 3 000		-6	MHz
	3 to 12.75		-6	GHz

Bluetooth Transmitter: GFSK

Characteristics			Тур.	Мах	Unit
Maximum RF output power ¹⁴	V _{DD_IN} =V _{BAT}		12		dBm
	$V_{DD_{-}IN}$ =external regulator to 1.8 V		10		
Power variation over Bluetooth band		-1		1	dB
Gain control range			30		dB
Power control step			5		dB
Adjacent channel power M-N =2			-45		dBm
Adjacent channel power M-N >2			-50		dBm

Bluetooth Transmitter: EDR

Characteristics				Тур.	Мах	Unit
EDR output power ¹⁵	π/4-DQPSK	1-DQPSK V _{DD_IN} =V _{BAT}		5.5		dBm
		$V_{DD_{-}IN}$ =external regulator to 1.8 V				
	8DPSK	V _{DD_IN} =V _{BAT}				
		$V_{DD_{-}IN}$ =external regulator to 1.8 V				
EDR relative power			-2		1	dB
Power variation over B	luetooth band		-1		1	dB
Gain control range				30		dB
Power control step				5		dB
Adjacent channel powe	er M-N =1			-36		dBc
Adjacent channel power M-N =2				-30		dBm
Adjacent channel power M-N >2				-42		dBm

¹³ Exceptions are taken out of the total 24 allowed in the Bluetooth specification.

 $^{^{\}rm 14}$ To modify maximum output power, use an HCI VS command.

¹⁵ To modify maximum output power, use an HCI VS command.

Characteristics -20 dB bandwidth		Condition			Тур.	Max.	Unit
		GFSK			925		kHz
F1 avg	Modulation characteristics	Δf1avg	Mod data=4 1 s, 4 0 s: 111100001111		165		kHz
	Modulation characteristics	Δ f2max ≥ limit for at least 99.9 % of all Δ f2max	Mod data=1010101		130		kHz
		Δf2avg, Δf1avg			88		%
Absolute	carrier frequency drift	DH1		-25		25	kHz
		DH3 and DH5		-35		35	
Drift rate						15	kHz/5 0 μs
Initial ca	rrier frequency tolerance			-75		75	kHz

Bluetooth LE Transceiver, Out-Of-Band and Spurious Emissions

Characteristics	Condition	Тур.	Max.	Unit
Second harmonic	Measured at maximum output power	-14	-2	dBm
Third harmonic		-10	-6	
Fourth harmonic		-19	-11	

Bluetooth LE Receiver: In-Band Signals

Characteristics	Condition	Min.	Тур.	Max.	Unit
Operation frequency range		2 402		2 480	MHz
Channel spacing			2		MHz
Input impedance			50		Ω
Sensitivity, Dirty Tx on ¹⁶	PER=30.8 %; dirty Tx on		-96		dBm
Maximum usable input power	GMSK, PER=30.8 %	-5			
Intermodulation characteristics	Level of interferers (for n=3, 4, 5)		-30		dBm
C/I performance ¹⁷	GMSK, cochannel		8		dB
Image=-1 MHz	GMSK, adjacent ±1 MHz		-5		
	GMSK, adjacent ±2 MHz		-45		
	GMSK, adjacent -2 MHz		-22		
	GMSK, adjacent ≥ ±3 MHz		-47		
Rx mode LO leakage	Frf=(received RF -0.6 MHz)		-63		dBm

¹⁶ Sensitivity degradation up to 3 dB may occur where the Bluetooth Low Energy frequency is a harmonic of the fast clock.

¹⁷ Numbers show wanted signal-to-interfering signal ratio. Smaller numbers indicate better C/I performance.

4 Specification

Bluetooth LE Receiver: General Blocking

Characteristics	Condition	Тур.	Unit
Blocking performance over full	30 to 2 000 MHz	-15	dBm
range, according to Bluetooth	2 000 to 2 399 MHz	-15	
LE specification ¹⁸	2 484 to 3 000 MHz	-15	
	3 to 12.75 GHz	-15	

Bluetooth LE Transmitter

Characteristics	Characteristics			Unit
RF output power	V _{DD_IN} =V _{BAT}	12		dBm
	$V_{DD_{-IN}}$ =External regulator to 1.8 V	10		
Power variation over Bluetooth LE band			1	dB
Adjacent channel power M-N =2				dBm
Adjacent channel power M-N >2		-50		dBm

Bluetooth LE Modulation

Characteristics		Condition		Min.	Тур.	Max.	Unit
∆f1 avg	Modulation characteristics	∆f1avg	Mod data=4 1 s, 4 0 s:	240	250	260	kHz
Δf2 max		Δf2max ≥ limit for at least 99.9 % of all Δf2max	Mod data=1010101	185	210		kHz
		Δf2avg, Δf1avg		0.85	0.9		
Absolute c	arrier frequency drift			-25		25	kHz
Drift rate						15	kHz/5 0 ms
Initial carri	er frequency tolerance			-75		75	kHz

No.	Parameter	Min.	Тур.	Max.	Unit
1	Average Power Hopping DH5	4	11.5	14	dBm
2	Average Power: Ch0	4	11.5	14	dBm
3	Peak Power: Ch0		11.5	14	dBm
4	Average Power: Ch39	4	11.5	14	dBm
5	Peak Power: Ch39		11.5	14	dBm
6	Average Power: Ch78	4	11.5	14	dBm

¹⁸ Exceptions are taken out of the total 10 allowed in the Bluetooth Low Energy specification.

Panasonic INDUSTRY

PAN1316C Bluetooth Module

4 Specification

No.	Parameter	Min.	Тур.	Max.	Unit
7	Peak Power: Ch78		11.5	14	dBm
8	Max. Frequency Tolerance: Ch0	-75	-2.6	75	kHz
9	Max. Frequency Tolerance: Ch39	-75	-2.2	75	kHz
10	Max. Frequency Tolerance: Ch78	-75	-2.1	75	kHz
11	Max. Drift: Ch0_DH1	-25	3.6	25	kHz
12	Max. Drift: Ch0_DH3	-40	3.7	40	kHz
13	Max. Drift: Ch0_DH5	-40	4	40	kHz
14	Max. Drift Rate: Ch0_DH1	-20	-2.6	20	kHz
15	Max. Drift Rate: Ch0_DH3	-20	-3.2	20	kHz
16	Max. Drift Rate: Ch0_DH5	-20	-3.3	20	kHz
17	Max. Drift: Ch39_DH1	-25	4	25	kHz
18	Max. Drift: Ch39_DH3	-40	4.3	40	kHz
19	Max. Drift: Ch39_DH5	-40	4.3	40	kHz
20	Max. Drift Rate: Ch39_DH1	-20	-3.1	20	kHz
21	Max. Drift Rate: Ch39_DH3	-20	-3.6	20	kHz
22	Max. Drift Rate: Ch39_DH5	-20	-3.7	20	kHz
23	Max. Drift: Ch78_DH1	-25	4.1	25	kHz
24	Max. Drift: Ch78_DH3	-40	4.5	40	kHz
25	Max. Drift: Ch78_DH5	-40	4.4	40	kHz
26	Max. Drift Rate: Ch78_DH1	-20	-3.4	20	kHz
27	Max. Drift Rate: Ch78_DH3	-20	-3.9	20	kHz
28	Max. Drift Rate: Ch78_DH5	-20	-4.1	20	kHz
29	Delta F1 Avg: Ch0	140	159.5	175	kHz
30	Delta F2 Max.: Ch0	99.9	100		%
31	Delta F2 Avg/Delta F1 Avg: Ch0	0.8	0.9		
32	Delta F1 Avg: Ch39	140	159.8	175	kHz
33	Delta F2 Max.: Ch39	99.9	100		%
34	Delta F2 Avg/Delta F1 Avg: Ch39	0.8	0.9		
35	Delta F1 Avg: Ch78	140	159.1	175	kHz
36	Delta F2 Max.: Ch78	99.9	100		%
37	Delta F2 Avg/Delta F1 Avg: Ch78	0.8	0.9		
45	Sensitivity	-81	-93		
46	f(H)-f(L): Ch0		918.4	1 000	kHz
47	f(H)-f(L): Ch39		918.3	1 000	kHz
48	f(H)-f(L): Ch78		918.2	1 000	kHz
49	ACPower -3: Ch3		-51.5	-40	dBm
50	ACPower -2: Ch3		-50.4	-40	dBm
				-40	
51	ACPower -1: Ch3	,	-18.5		dBm
52	ACPower Center: Ch3	4	6.8	20	dBr

Panasonic INDUSTRY

PAN1316C Bluetooth Module

4 Specification

No.	Parameter	Min.	Тур.	Max.	Unit
53	ACPower +1: Ch3		-19.2		dBm
54	ACPower +2: Ch3		-50.7	-40	dBm
55	ACPower +3: Ch3		-53.3	-40	dBm
56	ACPower -3: Ch39		-51.6	-40	dBm
57	ACPower -2: Ch39		-50.7	-40	dBm
58	ACPower -1: Ch39		-19		dBm
59	ACPower Center: Ch39	4	6.3	20	dBm
60	ACPower +1: Ch39		-19.7		dBm
61	ACPower +2: Ch39		-50.9	-40	dBm
62	ACPower +3: Ch39		-53.2	-40	dBm
63	ACPower -3: Ch75		-51.7	-40	dBm
64	ACPower -2: Ch75		-50.7	-40	dBm
65	ACPower -1: Ch75		-19.2		dBm
66	ACPower Center: Ch75	4	5.8	20	dBm
67	ACPower +1: Ch75		-20		dBm
68	ACPower +2: Ch75		-51	-40	dBm
69	ACPower +3: Ch75		-53.4	-40	dBm
70	omega i 2-DH5: Ch0	-75	-4.7	75	kHz
71	omega o + omega i 2-DH5: Ch0	-75	-6	75	kHz
72	omega o 2-DH5: Ch0	-10	-1.5	10	kHz
73	DEVM RMS 2-DH5: Ch0		0	0.2	%
74	DEVM Peak 2-DH5: Ch0		0.1	0.35	%
75	DEVM 99 % 2-DH5: Ch0	99	100		%
76	omega i 3-DH5: Ch0	-75	-3.7	75	kHz
77	omega o + omega i 3-DH5: Ch0	-75	-5.8	75	kHz
78	omega o 3-DH5: Ch0	-10	-2.6	10	kHz
79	DEVM RMS 3-DH5: Ch0		0	0.13	%
80	DEVM Peak 3-DH5: Ch0		0.1	0.25	%
81	DEVM 99 % 3-DH5: Ch0	99	100		%
82	omega i 2-DH5: Ch39	-75	-4.8	75	kHz
83	omega o + omega i 2-DH5: Ch39	-75	-6.1	75	kHz
84	omega o 2-DH5: Ch39	-10	-1.4	10	kHz
85	DEVM RMS 2-DH5: Ch39		0	0.2	%
86	DEVM Peak 2-DH5: Ch39		0.1	0.35	%
87	DEVM 99 % 2-DH5: Ch39	99	100		%
88	omega i 3-DH5: Ch39	-75	-3.8	75	kHz
89	omega o + omega i 3-DH5: Ch39	-75	-5.9	75	kHz
90	omega o 3-DH5: Ch39	-10	-2.6	10	kHz

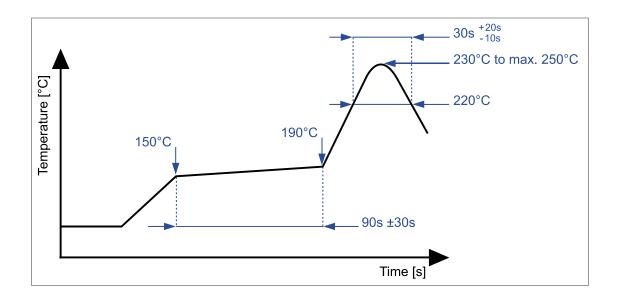
Panasonic

PAN1316C Bluetooth Module

4 Specification

No.	Parameter	Min.	Тур.	Max.	Unit
91	DEVM RMS 3-DH5: Ch39		0	0.13	%
92	DEVM Peak 3-DH5: Ch39		0.1	0.25	%
93	DEVM 99% 3-DH5: Ch39	99	100		%
94	omega i 2-DH5: Ch78	-75	-4.9	75	kHz
95	omega o + omega i 2-DH5: Ch78	-75	-6.2	75	kHz
96	omega o 2-DH5: Ch78	-10	-1.4	10	kHz
97	DEVM RMS 2-DH5: Ch78		0	0.2	%
98	DEVM Peak 2-DH5: Ch78		0.1	0.35	%
99	DEVM 99 % 2-DH5: Ch78	99	100		%
100	omega i 3-DH5: Ch78	-75	-3.8	75	kHz
101	omega o + omega i 3-DH5: Ch78	-75	-6.0	75	kHz
102	omega o 3-DH5: Ch78	-10	-2.7	10	kHz
103	DEVM RMS 3-DH5: Ch78		0	0.13	%
104	DEVM Peak 3-DH5: Ch78		0.1	0.25	%
105	DEVM 99 % 3-DH5: Ch78	99	100		%

4.7 Reliability Tests


The measurement should be done after the test module has been exposed to room temperature and humidity for one hour.

No.	Item	Limit	Condition
1	Vibration test	Electrical parameter are in specification	 Freq.: 10 Hz~50 Hz; Amplitude: 1.5 mm; 20 min./cycle, 1 h each of XYZ axis
			• Freq.: 30 Hz~100 Hz, 6G; 20 min./cycle, 1 h each of XYZ axis
2	Shock test		Dropped onto hard wood from a height of 50 cm for 3 times
3	Heat cycle test		-40 °C for 30 min. and 85 °C for 30 min.; each temperature 300 cycles
4	Moisture test		60 °C, 90 % RH, 300 h
5	Low temperature test		-40 °C, 300 h
6	High temperature test		85 °C, 300 h

4.8 Recommended Soldering Profile

- Reflow permissible cycles: 2
 - Opposite side reflow is prohibited due to module weight
 - More than 75 percent of the soldering area shall be coated by solder
 - The soldering profiles should be adhered to in order to prevent electrical or mechanical damage
 - Soldering profile assumes lead-free soldering

5 Cautions

Failure to follow the guidelines set forth in this document may result in degrading of the module functions and damage to the module.

5.1 Design Notes

- 1. Follow the conditions written in this specification, especially the control signals of this module.
- 2. The supply voltage should abide by the maximum ratings (⇔ 4.2 Absolute Maximum Ratings).
- The supply voltage must be free of AC ripple voltage (for example from a battery or a low noise regulator output). For noisy supply voltages, provide a decoupling circuit (for example a ferrite in series connection and a bypass capacitor to ground of at least 47 µF directly at the module).
- 4. This module should not be mechanically stressed when installed.
- 5. Keep this module away from heat. Heat is the major cause of decreasing the life time of these modules.
- 6. Avoid assembly and use of the target equipment in conditions where the module temperature may exceed the maximum tolerance.
- 7. Keep this module away from other high frequency circuits.
- 8. Refer to the recommended pattern when designing a board.

5.2 Installation Notes

- Reflow soldering is possible twice based on the conditions set forth in
 ⇒ 4.8 Recommended Soldering Profile. Set up the temperature at the soldering portion
 of this module according to this reflow profile.
- 2. Carefully position the module so that the heat will not burn into printed circuit boards or affect other components that are susceptible to heat.
- 3. Carefully locate the module, to avoid an increased temperature caused by heat generated by neighboring components.
- 4. If a vinyl-covered wire comes into contact with the module, the wire cover will melt and generate toxic gas, damaging the insulation. Never allow contact between a vinyl cover and these modules to occur.
- 5. This module should not be mechanically stressed or vibrated when reflowed.
- 6. To repair the board by hand soldering, follow the conditions set forth in this chapter.
- 7. Do not wash this product.
- 8. Pressing on parts of the metal cover or fastening objects to the metal will cause damage to the module.

5.3 Usage Condition Notes

- Take measures to protect the module against static electricity.
 If pulses or transient loads (a large load, which is suddenly applied) are applied to the modules, check and evaluate their operation before assembly of the final products.
- 2. Do not use dropped modules.
- 3. Do not touch, damage, or soil the pins.
- 4. Follow the recommended condition ratings about the power supply applied to this module.
- 5. Electrode peeling strength: Do not apply a force of more than 4.9 N in any direction on the soldered module.
- 6. Pressing on parts of the metal cover or fastening objects to the metal cover will cause damage.
- 7. These modules are intended for general purpose and standard use in general electronic equipment, such as home appliances, office equipment, information, and communication equipment.

5.4 Storage Notes

- 1. The module should not be stressed mechanically during storage.
- 2. Do not store these modules in the following conditions or the performance characteristics of the module, such as RF performance will be adversely affected:
 - Storage in salty air or in an environment with a high concentration of corrosive gas, such as Cl₂, H₂S, NH₃, SO₂, or NO_X,
 - Storage in direct sunlight,
 - Storage in an environment where the temperature may be outside the range of 5 °C to 35 °C, or where the humidity may be outside the 45 % to 85 % range,
 - Storage of the modules for more than one year after the date of delivery storage period: Please check the adhesive strength of the embossed tape and soldering after 6 months of storage.
- 3. Keep this module away from water, poisonous gas, and corrosive gas.
- 4. This module should not be stressed or shocked when transported.
- 5. Follow the specification when stacking packed crates (max. 10).

5.5 Safety Cautions

These specifications are intended to preserve the quality assurance of products and individual components.

Before use, check and evaluate the operation when mounted on your products. Abide by these specifications without deviation when using the products. These products may short-circuit. If electrical shocks, smoke, fire, and/or accidents involving human life are anticipated when a short circuit occurs, provide the following failsafe functions as a minimum:

- 1. Ensure the safety of the whole system by installing a protection circuit and a protection device.
- 2. Ensure the safety of the whole system by installing a redundant circuit or another system to prevent a single fault causing an unsafe status.

5.6 Other Cautions

- 2. Be sure to provide an appropriate fail-safe function on your product to prevent any additional damage that may be caused by the abnormal function or the failure of the module.
- 3. This module has been manufactured without any ozone chemical controlled under the Montreal Protocol.
- 4. These modules are not intended for use under the special conditions shown below. Before using these modules under such special conditions, carefully check their performance and reliability under the said special conditions to determine whether or not they can be used in such a manner:
 - In liquid, such as water, salt water, oil, alkali, or organic solvent, or in places where liquid may splash,
 - In direct sunlight, outdoors, or in a dusty environment,
 - In an environment where condensation occurs,
 - In an environment with a high concentration of harmful gas (e. g. salty air, HCl, Cl₂, SO₂, H₂S, NH₃, and NO_x).
- If an abnormal voltage is applied due to a problem occurring in other components or circuits, replace these modules with new modules, because they may not be able to provide normal performance even if their electronic characteristics and appearances appear satisfactory.

For further information please refer to the Panasonic website \Rightarrow 6.2.2 Product Information.

5.7 Restricted Use

5.7.1 Life Support Policy

This Panasonic Industrial Devices Europe GmbH product is not designed for use in life support appliances, devices, or systems where malfunction can reasonably be expected to result in a significant personal injury to the user, or as a critical component in any life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Panasonic customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panasonic Industrial Devices Europe GmbH for any damages resulting.

5.7.2 Restricted End Use

This Panasonic Industrial Devices Europe GmbH product is not designed for any restricted activity that supports the development, production, handling usage, maintenance, storage, inventory or proliferation of any weapons or military use.

Transfer, export, re-export, usage or reselling of this product to any destination, end user or any end use prohibited by the European Union, United States or any other applicable law is strictly prohibited.

5.8 Bluetooth

The final Bluetooth end product listing needs to be created by using the following IDs:

Bluetooth	QDID
Panasonic Module (PAN1316C) Bluetooth 5.1 Controller Subsystem	152166
TI Bluetooth 5.1 Host Component (Tested)	145296

Bluetooth Marks

According to the Bluetooth SIG, the PAN1316C fulfills the criteria to label your product as a Bluetooth device:

For further information please refer to the Bluetooth website <u>www.bluetooth.com</u>.

6 Appendix

6.1 Ordering Information

Variants and Versions

Order Number	Brand Name	Description	MOQ ¹⁹
ENW89823C4KF	PAN1316C	Bluetooth Basic Data Rate and Low Energy Module without antenna	1 500

¹⁹ Abbreviation for Minimum Order Quantity (MOQ). The default MOQ for mass production is 1 500 pieces, fewer only on customer demand. Samples for evaluation can be delivered at any quantity via the distribution channels.

6.2 Contact Details

6.2.1 Contact Us

Please contact your local Panasonic Sales office for details on additional product options and services:

For Panasonic Sales assistance in the **EU**, visit <u>https://eu.industrial.panasonic.com/about-us/contact-us</u> **Email:** wireless@eu.panasonic.com

For Panasonic Sales assistance in **North America**, visit the Panasonic website "Sales & Support" to find assistance near you at https://na.industrial.panasonic.com/distributors

Please visit the **Panasonic Wireless Technical Forum** to submit a question at <u>https://forum.na.industrial.panasonic.com</u>

6.2.2 Product Information

Please refer to the Panasonic Wireless Connectivity website for further information on our products and related documents:

For complete Panasonic product details in the **EU**, visit http://pideu.panasonic.de/products/wireless-modules.html

For complete Panasonic product details in **North America**, visit <u>http://www.panasonic.com/rfmodules</u>